
1 23

Molecular Biology Reports
An International Journal on Molecular
and Cellular Biology
 
ISSN 0301-4851
 
Mol Biol Rep
DOI 10.1007/s11033-019-04678-x

Phenolic compounds, antioxidant capacity
and antimutagenic activity in different
growth stages of in vitro raised plants of
Origanum vulgare L.

Aseesh Pandey, Tarun Belwal, Sushma
Tamta, I. D. Bhatt & R. S. Rawal



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Nature B.V.. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Vol.:(0123456789)1 3

Molecular Biology Reports 
https://doi.org/10.1007/s11033-019-04678-x

ORIGINAL ARTICLE

Phenolic compounds, antioxidant capacity and antimutagenic activity 
in different growth stages of in vitro raised plants of Origanum vulgare 
L.

Aseesh Pandey1,2,3  · Tarun Belwal1 · Sushma Tamta2 · I. D. Bhatt1 · R. S. Rawal1

Received: 14 December 2018 / Accepted: 6 February 2019 
© Springer Nature B.V. 2019

Abstract
Efficient micropropagation procedure was developed for Origanum vulgare, a high-value culinary herb, and the phytochemi-
cals, phenolic content, antioxidant and antimutagenic activity of leaf and stem, derived from different growing stages were 
analyzed. The agar solidified Murashige and Skoog (MS) medium supplemented with a combination of 6-benzylaminopurine 
and α-naphthaleneacetic acid was optimized as best shoot-multiplication-medium. Shoots were rooted best on 1/2 strength 
MS medium supplemented with 50 µM indole-3-butyric acid (IBA). The plantlets were successfully acclimatized ex vitro in a 
soil, sand and farmyard manure mixture (2:1:1 v/v/v) with 100% survival rate in greenhouse. The total anthocyanin and total 
phenolic content were observed significantly higher in leaves of in vitro-raised plants. However, total tannin, flavonoid and 
antioxidant activity remained higher in leaves of mother plant maintained under ployhouse condition. All the plant extracts 
have shown significant antimutagenic activity except in vitro-growing plants. A total of 13 polyphenolic compounds were 
detected in different extracts using high performance liquid chromatography. Among these, catechin was detected maximum 
in in vitro-growing cultures and chlorogenic acid in leaves of mother plant. These findings will help the farmers, medicinal 
plant growers, and industries for mass multiplication and effective extraction of phytochemicals from O. vulgare.
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AAE  Ascorbic acid equivalent
ABTS  2,2-Azinobis (3-ethylbenzothiazoline-6-sulphonic 

acid)
asl  Above mean sea level
BAP  6-Benzylaminopurine
CN  Cyanidin 3-glucoside

DPPH  2,2-Diphenyl-1-picryhydrazyl
DAD  Diode-array detection
GA3  Gibberellic acid
GAE  Gallic acid equivalent
HPLC  High performance liquid chromatography
IBA  Indole-3-butyric acid
IL  In vitro-raised plant leaf
IS  In vitro-raised plant stem
IVG  In vitro-growing cultures
MPL  Mother plant leaf
MPS  Mother plant stem
MS  Murashige and Skoog
NAA  α-Naphthaleneacetic acid
PBS  Phosphate-buffered saline
PGRs  Plant growth regulators
TAE  Tannic acid equivalent
TBE  Tris borate ethylenediaminetetraacetic acid
QE  Quercetin equivalent
µM  Micro mole

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1103 3-019-04678 -x) contains 
supplementary material, which is available to authorized users.

 * Aseesh Pandey 
 draseeshpandey@gmail.com

1 G. B. Pant National Institute of Himalayan Environment 
and Sustainable Development, Kosi-Katarmal, Almora, 
Uttarakhand 263643, India

2 Department of Biotechnology, Bhimtal Campus, Kumaun 
University, Nainital, Uttarakhand 263136, India

3 G. B. Pant National Institute of Himalayan Environment 
and Sustainable Development, Sikkim Regional Centre, 
Gangtok, East Sikkim 737101, India

Author's personal copy

http://orcid.org/0000-0001-8063-2646
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-019-04678-x&domain=pdf
https://doi.org/10.1007/s11033-019-04678-x


 Molecular Biology Reports

1 3

Introduction

Origanum vulgare L. (Lamiaceae), commonly known as 
Van Tulsi or Himalayan majorana, is an aromatic perennial 
herb, native to the Mediterranean region [1, 2]. In India, 
it is the only reported species of genus Origanum and dis-
tributed across the sub-temperate to temperate Himalayan 
regions, from Kashmir to Sikkim, at elevations from 600 
to 4000 m asl [3]. O. vulgare is an important culinary herb 
and among the most traded and consumed spice plants in 
world trade [4]. Besides, it is known to possess antioxi-
dant, antimicrobial, insecticidal, antifungal and antiseptic 
properties [5–8]. It is a vital source of polyphenols and 
their biosynthetic precursors, such as anthocyanins, flavo-
noids, flavonols, phenolic acids, pro-anthocyanins, tannins 
etc. which are known to possess antioxidant, anticancer, 
antimutagenic, antitumor activity [9–12], and helps in 
maintaining the homeostasis of the body by scavenging 
reactive oxygen species (ROS) [13]. Perhaps due to these 
proven biological properties, O. vulgare is used to treat 
various ailments such as spasmodic condition, digestive 
disorders, menstrual problems, whooping, convulsive 
coughs etc. since ancient times [2], and enjoy wide indus-
trial, pharmaceutical and traditional demand around the 
world [12].

To date, most of the consumed plant material of O. 
vulgare is collected from wild, which is hampering its 
availability in natural populations [14]. Further, very 
less is known about its cultivation and domestication [4]. 
Traditionally, O. vulgare is propagated through seeds and 
cuttings (vegetative propagation), however, poor germi-
nation rate, low seed viability, seed sterility, hampers its 
large-scale propagation through seeds and the repeated 
vegetative propagation resulted progressive yield loss in 
the progenies [15]. Plant tissue culture-based techniques 
have emerged as an alternative for mass-multiplication, 
conservation and in vitro secondary metabolite produc-
tion of high-value plant species across the globe [16, 17]. 
Although, some in vitro propagation studies are available 
for genus Origanum and mainly focused on plant regen-
eration response from the meristematic tips [15], axillary 
buds [18], and seeds [19, 20]. However, screening of poly-
phenols, and pharmaceutical activities in different growing 
stages and plant parts of O. vulgare is not reported so far.

The present study focuses on (i) development of effec-
tive in vitro propagation protocol for O. vulgare, (ii) com-
parative evaluation of phytochemicals, antioxidant and 
anti-mutagenic activity in different plant parts (leaf and 
stem) of O. vulgare across different growth stages and wild 
plants, (iii) screening of antioxidant-polyphenolics in dif-
ferent growth stages using HPLC.

Materials and methods

Plant material

Plants of O. vulgare L. were collected during the month of 
September 2011 from the wild population at Mukteshwer, 
Uttarakhand, West Himalaya, India (latitude 79º37′18″N, 
longitude 29º26′60″E; altitude 2186 m asl) and established 
in the greenhouse (under 24 ± 5 °C atmospheric tempera-
ture and 70–80% relative humidity). Nodal explants were 
taken from wild plant established in greenhouse (mother 
plant) as starting material for in vitro propagation of O. 
vulgare.

In vitro micropropagation

Nodal segments were excised from the mother plant and 
washed thoroughly under tap water using a few drops of 
Tween 20 for 30 min. Thereafter, nodal segments were 
subjected to 0.50% w/v systematic fungicide solution 
(Bavistin, BASF India Ltd.) for 15 min and surface steri-
lized with freshly prepared 0.1% (w/v) mercuric chloride 
 (HgCl2) for 5 min under laminar air flow cabinet (Vista 
Biotech, India). Each treatment was followed by five 
time washing with sterile ultrapure water (Rions: 0.2 µm 
capsule filter, Labpure series). After proper disinfection, 
these nodal explants were inoculated on MS medium 
supplemented with 3% (w/v) sucrose, and different con-
centrations of 6-benzylaminopurine (BAP; 1.0–8.0 µM) 
alone for shoot induction and/or in combination with 
α-naphthaleneacetic acid (NAA; 0.10–0.50 µM), Gibberel-
lic acid  (GA3; 0.25 µM) for shoot multiplication and elon-
gation, respectively. Nodal explants inoculated onto MS 
medium without supplementation of plant growth regula-
tors (PGRs) were served as control. All in vitro cultures 
were maintained in a growth room at 25 ± 2 °C under a 
16/8 h light/dark photoperiod with 42 µM m−2 s−1 illumi-
nation provided by cool white fluorescent tubes (Philips 
40 W). The MS medium was solidified with 0.8% (w/v) 
agar and pH of the medium was adjusted to 5.8 with 1N 
NaOH before autoclaving at 121 °C for 15 min. Based 
on a comparative assessment of the influence of these 
PGR levels on shoot induction, proliferation and elonga-
tion, growth parameters were monitored up to 6-week. 
The regenerated shoots (3 to 5 cm long) from actively 
growing cultures were excised and subjected to two-step 
rooting procedure described by Pandey and Tamta [21]. 
Briefly, excised microshoots were subjected to solid MS 
medium supplemented with 50 µM IBA for 24 h and then 
rooted individually on a hormone-free 1/2-strength MS 
basal medium. Rooted plants were carefully taken out from 
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culture flasks and washed in ultrapure water to remove the 
traces of medium. These rooted plants were transferred 
to hardening pots containing a mixture of soil, sand and 
farmyard manure in a ratio of 2:1:1 (v/v/v) and covered 
by transparent polybags and initially hardened inside the 
growth room for 4-week. The potting mixture was mois-
tened twice a week with 1/2 strength MS without sucrose. 
After 4-week, the semi-hardened plants were transferred 
to greenhouse on a normal day/night condition at the 
24 ± 5 °C temperature and 60–70% relative humidity. The 
survival rate of plantlets was recorded after 6-week of 
transfer in the greenhouse.

Phytochemical analysis

Extract preparation

Leaves and stem samples were collected from (i) mother 
plant maintained in the greenhouse, (ii) well acclimatized 
1 year old in vitro-raised plants, and (iii) in vitro-growing 
cultures of O. vulgare. These were washed properly with 
ultrapure water to remove the traces of dust/MS medium 
and then dried at room temperature. The dried samples were 
grounded to make a fine texture using mortar and pestle. 
For extraction, 1 g of the powder was mixed into 10 ml of 
80% methanol (v/v) and homogenized under Ultrasonicator 
(Toshiba India) for 5 min. The homogenized mixture was 
kept at 60 °C in a water bath for 1 h. This was stored in 
tightly capped bottles for 24 h at room temperature and then 
filtered by Whatman filter paper no 1. The filtrate (extract) 
was stored in glass vials at − 20 °C prior to analysis.

Estimation of total phenolic content

Total phenolic content (TPC) was determined by Folin–Cio-
calteu’s colorimetric method [22]. The quantification of TPC 
was done on the basis of the standard curve of gallic acid and 
results were expressed in mg gallic acid equivalents (GAE)/g 
of dry weight.

Estimation of total tannin content

Total tannin content (TTC) was measured by Folin’s Dennis 
method described by Nwinuka et al. [23]. The quantification 
of TTC was done on the basis of the standard curve of tannic 
acid and results were expressed in mg tannic acid equivalent 
(TAE)/g of dry weight.

Estimation of total flavonoid content

Total flavonoid content (TFC) in the methanolic extract was 
determined by aluminium chloride colorimetric method 
[24]. The quantification of TFC was done on the basis of 

the standard curve of quercetin and results were expressed 
in mg quercetin equivalent (QE)/g of dry weight.

Estimation of total anthocyanin content

Total anthocyanin content (TAC) was measured by pH dif-
ferential AOAC method [25]. The TAC was expressed as 
milligram cyanidin-3-glucoside equivalent per 100 g dry 
weight (mg CGE/100 g dw) of the sample and quantified 
with the following formulae:

where, ∆A = [(A520–A700 nm) pH 1.0 − (A520–A700 nm) 
pH 4.5]; molecular weight (449.2  g/mol of cyanidin-
3-glucoside); df = dilution factor; l = path length in cm; 
ε = 26,900 M extinction coefficient in L mol−1 cm−1 for 
cyanidin-3-glucoside.

Antioxidant activity

DPPH radical‑scavenging assay

The free radical scavenging activity was tested using 
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scav-
enging assay [26]. Ascorbic acid was used as a standard 
and results were expressed in millimole (mM) ascorbic acid 
equivalent (AAE)/g of dry weight.

ABTS radical‑scavenging assay

The 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid 
(ABTS) radical scavenging assay was performed using 
an improved ABTS method [27], using ascorbic acid as a 
standard. The radical scavenging activity of the extracts 
was expressed as mM ascorbic acid equivalent (AAE)/g dry 
weight.

DNA damage protection assay (antimutagenic 
activity)

Conversion of the supercoiled form of plasmid DNA to 
the open-circular and/or linear forms were analysed as an 
indicator of DNA damage. For this, pBR322 plasmid DNA 
was photolyzed via UV radiation in the presence of  H2O2 
as described by Pandey et al. [28], with minor modifica-
tions. Different extracts of O. vulgare were tested for their 
antimutagenic potential, along with a standard antioxidant 
(ascorbic acid). Reaction mixtures (15  µL) containing 
180 ng of pBR322 plasmid DNA, 7.5%  H2O2, plant extract 
(1 mg/mL) and/or ascorbic acid (1 mg/mL) while one tube 
was kept as control (C) without plant extract and ascorbic 

TAC (mg CGE∕100g dw) =

(

ΔA ×MW × df × 100

�

)

l
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acid. The reaction was carried out at room temperature and 
UV radiation was provided from 40 cm distance for 30 min. 
After 30 min reaction tubes were placed in − 20 °C for 
20 min to stop the reaction. Moreover, 180 ng of pBR322 
plasmid DNA mixed in 1 × PBS buffer (pH 7.4) was placed 
in a separate tube for non-irradiated control (P). To visualize 
results, electrophoresis was performed on 1.0% agarose gel 
in 0.5 × TBE buffer at 45 V for 2 h. After proper separation, 
the gel was photographed under gel documentation system 
(Uvitech, Cambridge, UK) and band density was determined 
using the software (Uvipro Platinum 1.1). The following 
formulae were used for calculating the percentage of super-
coiled pBR322 plasmid DNA (S %), relative supercoiled 
pBR322 plasmid DNA (RS %) and relative ascorbic acid 
prevention of supercoiled DNA (RAS %):

where s: supercoiled, l: linear and oc: open circular forms of 
pBR322 plasmid DNA.

Phenolic profile analysis

Phenolic profiles were evaluated using a high performance 
liquid chromatography (HPLC) system equipped with diode 
array detector (DAD-MZOA) and two LC-10ATvp HPLC 
pumps (Shimadzu LC-10AT, Shimadzu, Japan), based on 
the method [27, 29]. The quantity of each phenolic com-
pound was calculated by peak areas and standard curves of 
corresponding standards and results were expressed as mg/g 
dry weight of the sample. All the standards were purchased 
from Sigma-Aldrich, Steinheim, USA.

Chemicals

All the micro and macronutrients, vitamins and iron-source 
of Murashige and Skoog [30] (MS) medium were purchased 
from the HiMedia, Laboratories Pvt. Limited, Mumbai, 
India. Plant growth regulators, HPLC standards, caffeic acid, 
catechin, chlorogenic acid, ellagic acid, ferulic acid, gallic 
acid, m-coumaric acid, p-coumaric acid, phloridzin, querce-
tin, rutin, trans-cinnamic acid, vanillic acid, 3-hydroxyben-
zoic acid, 4-hydroxybenzoic acid ascorbic acid, catechin, 
cyanidin 3-glucoside, gallic acid, quercetin and 2,2-Diphe-
nyl-1-picryhydrazyl (DPPH) were purchased from Sigma-
Aldrich, (St. Louis, Missouri, United States). Aluminium 

S% =

(

Band density of (s)

Band density of (s + l + oc)

)

100

RS% =

(

S% of test samples

S% of control

)

100

RAS% =

(

S% of test samples

S% of ascorbic acid

)

100

chloride, acetic acid, ferric chloride, hydrochloric acid, 
potassium acetate, potassium chloride, sodium acetate, 
sodium carbonate and potassium persulphate from Sisco 
Research Laboratories Pvt. Ltd. Mumbai, India. Ethanol, 
methanol 2,2-Azinobis-3-ethylbenzthiazoline-6-sulphonic 
acid (ABTS) and 2,4,6-tri-2-pyridyl-1,3,5-triazin (TPTZ) 
from Merck KGaA, Darmstadt, Germany and pBR322 vec-
tor from Promega, Madison, WI, USA. All the chemicals 
purchased were of analytical and HPLC grade.

Statistical analysis

All the experiments were set up in a completely randomized 
design and performed in triplicate. The data were subjected 
to one-way analysis of variance (ANOVA) [31]. Significant 
differences (P < 0.05) between mean values were detected 
using Duncan’s multiple range test. All the statistical analy-
sis were done using SPSS statistical package for Windows 
(Version 20; SPSS Inc., Chicago, USA) statistical software 
package.

Result and discussion

In vitro propagation

Culture establishment and shoot induction

The physiological status of explant plays a significant role 
in the establishment of cultures, thus the mother plants 
were established in the greenhouse as a fresh source of the 
explant. The shoot emergence was observed after 2 week 
of culture (Fig. 1a); BAP (4.0 µM) showed significantly 
(P < 0.05) higher responses in terms of shoot induction 
(91.67%) and maximum shoot length (2.29 ± 0.03  cm). 
Increased concentration of BAP showed a deleterious effect 
on shoot induction (Table S1). Similarly, all the explants 
cultured on MS basal medium (control) turned brown within 
15 days of culture without initiating shoots. This may be due 
to the insufficient endogenous level of hormones to sustain 
the growth of these explants in the basal medium. Similar 
results have been reported from the plants of Lamiaceae, 
Ocimum sanctum [32] and other such as, Quercus serrata 
[21], Canscora decussate [33], Couroupita guianensis [34]. 
After induction of shoots from lateral buds, these were 
excised and cultured in shoot multiplication medium, i.e. MS 
medium supplemented with optimized BAP concentrations 
(4.0 µM) along with different concentrations of 1-naphtha-
leneacetic acid (NAA, 0.10–0.50 µM).

The lower concentration of NAA with different cyto-
kinins has been proven the most efficient in various 
in vitro propagation studies including genus Origanum, 
viz. O. vulgare x applii [15], O. acutidens [20], and others 
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Berberis chitria [35], Berberis aristata [36], Jeffersonia 
dubia [16]. Similarly, the positive effect of BAP and NAA 
was observed during the present study in maximizing the 
number of shoots (Fig. 1b). Results of shoot multiplication 
responses are depicted in Table S1. Although, no signifi-
cant (P < 0.05) difference was observed in shoot induction 
frequency among different PGRs combinations; however, 
a significant (P < 0.05) difference was observed in remain-
ing parameters such as the number of shoots, shoot length 
and the length of longest shoot (Table S1). Highest shoot 
induction frequency (100%), with 27.50 ± 2.05 shoots per 
explant and an average shoot length of 3.47 ± 0.15 cm 
was observed in MS medium supplemented with 4.0 µM 
BAP and 0.25 µM NAA (Table S1). To increase the aver-
age shoot length, multiple shoots obtained after 60 days 
of culture in shoot multiplication medium were trans-
ferred into elongation medium (Fig. 1c, d). In elonga-
tion medium NAA (0.25  µM) was replaced with  GA3 
(0.25 µM). Replacement of NAA with  GA3 has shown 
positive response and significantly (P < 0.05) enhanced 
average shoot length (6.57 ± 0.38 cm) and length of long-
est shoot (9.93 ± 0.83 cm), while the shoot multiplication 
rate was reduced to 8.33 ± 2.08 shoots per explant (Fig. 2). 
The stimulating effect of  GA3 on elongation of diminutive 
shoots, raised on BAP supplemented medium, has been 

reported in several other plant species [37]. The study of 
Arney and Mancinelli [38] indicates that the cell elonga-
tion effect of  GA3 is a derivative of the increased mitotic 
activity, possibly through an increased production of auxin 
in the apical and sub-apical meristematic regions. This 
might have reduced the shoot multiplication rate of O. 
vulgare in the elongation medium.

Fig. 1  In vitro propagation of O. vulgare. a Shoot induction in 
nodal explant (15  days) in MS medium supplemented with 4  µL 
BAP; b shoot multiplication in MS medium supplemented with 
BAP + NAA (4.0 + 0.25  µL) (60  days); c, d in  vitro shoot elonga-
tion in MS medium with BAP + GA3(4.0 + 0.25  µL) (30 days); e 

microshoots rooted on MS medium supplemented with BAP + GA3 
(4.0 + 0.25 µM); f well rooted shoots (30 days) prior to acclimatiza-
tion; g potted plants inside culture room for gradual acclimatization; 
h well acclimatized plants showing promising growth after 60 days of 
acclimatization
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Fig. 2  Effect of (BAP + GA3) on in  vitro shoot elongation. BAP 
6-benzylaminopurine; GA3 gibberellic acid. Vertical bars, represent-
ing mean ± SD, followed by same letters within a growth medium are 
not significantly different and separated by using Duncan’s multiple 
range test (DMRT; P < 0.05)
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Root induction and acclimatization

Well-developed shoots (> 5 cm long) were subcultured on 
1/2 strength MS medium containing indole-3-butyric acid 
(IBA) for rooting. A 100% rooting with 42.33 number of 
roots and 2.20 ± 0.53 cm average root length (LR) was 
observed in MS medium supplemented with IBA in a two-
step rooting procedure. The root induction was observed 
in shoot multiplication medium (91.67%, 11.33 ± 1.15 and 
1.67 ± 0.42 cm, percent rooting, number of roots and cm 
average root length, respectively) and shoot elongation 
medium (83.33%; 24.33 ± 9.29;3.37 ± 0.51 cm, percent root-
ing, number of roots and cm average root length, respec-
tively). Root induction was observed in each treatment with 
significantly (P < 0.05) different responses. A comparative 
rooting response of shoots under different treatments is 
depicted in Table S2. Similar results were also observed in 
Origanum acutidens [20]. The two-step rooting procedure 
was successfully used in our earlier studies [21, 28, 35] for 
in vitro root induction. Further, it has been observed that 
shoots rooted in elongation medium have shown 100% sur-
vival rate, while shoots rooted in growth regulator-free MS 
medium did not survive (Fig. 1g, h). It is reported that both 
cytokinins and auxins can be produced in roots and shoots 
[39, 40], but their production is regulated by the location 
of the synthesizing cells in the plant and their developmen-
tal stage and environmental conditions [41]. In the present 
study, plants rooted in PGR-free MS medium have gained 
significantly (P < 0.05) low plant height (2.23 ± 1.94 cm), 
with less number of roots and small root length (1.67 ± 1.53 
and ~ 0.70 ± 0.61  cm, respectively), which might have 
restricted their establishment during acclimatization. In 
elongation medium plants attended significantly (P < 0.05) 
better plant height (14.33 ± 3.62 cm) with adequate average 
root numbers (24.33 ± 9.29) and root length (3.37 ± 0.51 cm) 
which is essential for better survival in in vivo conditions 
where plant requires its own system for PGR synthesis. 
Because root tips are major sites of cytokinin synthesis and 
young shoots are the major sites of auxin production and 
these signals move in specific structural pathways and by 
different mechanisms to regulate plant development and dif-
ferentiation [42]. Observations of present study revealed that 
for in vitro mass multiplication of O. vulgare, MS medium 
supplemented with 4.0 µM BAP and 0.25 µM NAA is the 
best. Further, plant length is essential for better survival of 
O. vulgare in field conditions along with root numbers and 
root length. Aloni et al. [41] reported that the young shoots 
are the major sites of auxin production, which promotes 
root development and induces vascular differentiation. The 
differentiating protoxylem vessel elements stimulate lateral 
root initiation by auxin-ethylene-auxin signaling [43]. The 
well-developed rooting system possibly strengthened the 
survival of in vitro-raised plants during acclimatization, as 

root tips are major sites of cytokinin synthesis [42], which 
regulate plant development and differentiation. Therefore, 
planting material of in vitro-raised O. vulgare can be devel-
oped within two steps without rooting step i.e. mass multi-
plication and elongation in 4.0 µM BAP and 0.25 µM  GA3 
supplemented MS medium (Fig. 1e, f). In vitro propagation 
methods are also being used in secondary metabolite pro-
duction [44], screening of high metabolite producing cell 
lines [45] and studying the metabolism [46]. Thus further 
research needs to be done in these areas to harness the com-
plete potential of this important species.

Phytochemical and antioxidant analysis

Polyphenols have received greater attention due to their role 
in several degenerative and aging-related diseases [47]. The 
results of present study revealed that the level of total phe-
nolic content in different parts of mother plant i.e. leaves 
(MPL) and stem (MPS) and in vitro-raised plant parts i.e. 
leaves (IL) and stem (IS) along with in vitro growing culture 
(IVG) of O. vulgare was varied significantly (P < 0.05). The 
highest total phenolic content was observed in IL extract 
(16.97 ± 0.06 mg GAE/g dw). Similarly, highest total tan-
nin content (23.55 ± 0.29 mg TAE/g dw) was observed in 
MPL extract and IL (23.42 ± 0.11 mg TAE/ g dw) extract, 
and flavonoid content in MPL extract (12.15 ± 0.02 mg 
QE/g dw) (Table 1). However, the total anthocyanin content 
was recorded maximum in IL (0.0251 mg CE/100 g dw) and 
least in IVG (0.0054 mg CE/100 g dw). These variation in 
phytochemicals content within the plant parts have also been 
reported by Surveswaran et al. [48] in 12 medicinal plants of 
the Asclepiadaceae and Periplocaceae families, and can be 
attributed to specific metabolic and endogenous physiologi-
cal changes taking place in the plants [11].

The total antioxidant activities were determined by DPPH 
and ABTS assays, and the results were presented in Table 1. 
Among the all studied extracts, significantly (P < 0.05) 
higher DPPH radicals scavenging activity was observed in 
MPL extract (33.22 ± 0.14 mM AAE/g dw) and lowest in 
IVS extract (19.18 ± 0.14 mM AAE/g dw). However, the 
extracts have shown no significant (P < 0.05) difference in 
ABTS activity. The higher antioxidant activity of ex vitro 
plants than in vitro grown plants is an agreement with the 
levels of stress in different growth conditions [33, 49]. The 
ex vitro growing mother plant (MPL and MPS) is more vul-
nerable to physical, climatic and biological stresses than the 
in vitro-raised and greenhouse maintained plants (IL and IS), 
while in vitro-growing cultures are least vulnerable to these 
factors, as these were kept in controlled conditions and for-
tified with nutrient media. These stress conditions develop 
reactive oxygen species (ROS) and therefore plants might 
develop a strong antioxidant system against ROS for their 
survival [33, 50]. Phenolic compounds such as anthocyanin, 
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tannin, and flavonoid have exhibited the significant antioxi-
dant activity in different in vitro cellular models [11], and 
are protective against diverse reactive oxygen species (ROS) 
including hydroxyl radical, peroxyl radical, hypochlorous 
acid, superoxide anion and peroxynitrite through their scav-
enging [13], and stabilizing lipid peroxidation [51]. Now a 
days, the food sources rich in natural phenolic compounds 
are of considerable interest and such plants or plant products 
are an important parts of diets, as they can bring several 
antioxidant related health benefits.

Antimutagenic activity

Ultraviolet radiation produces hydroxyl (OH) radicals by 
peroxidizing  H2O2, which can damage the plasmid DNA 
especially supercoiled form. Compounds having OH scav-
enging activity can avoid this process and protect plasmid 
DNA. Methanolic extract of different growing conditions 
and different plant parts of O. vulgare were studied for 
DNA protection potential. Ultraviolet radiation breaks 
 H2O2 and produces OH radicals, which damages pBR322 

plasmid DNA consequently degradation of supercoiled 
DNA takes place. However, the reaction mixture having 
OH scavenging material can prevent the DNA damage. 
The DNA damage has been prevented by the methanolic 
extracts of O. vulgare and significantly (P < 0.05) higher 
DNA damage prevention activity was observed in MPL 
extract (RS%, 69.45 ± 3.23) followed by IL extracts (RS%, 
64.97 ± 3.04) (Fig. 3 lane 3–8). It was observed that the 
DNA protection activity of O. vulgare plant extracts was 
significantly (P < 0.05) higher than the used standard 
antioxidant i.e. ascorbic acid (Fig. 4, Table S3). Results 
of DNA prevention assay also support the phytochemi-
cal composition of methanolic extracts of O. vulgare. The 
antioxidant activity of flavonoids corresponds to their 
peroxyl-radicals scavenging property and by chelating 
iron ions [9]. Further, anticarcinogenic and antimuta-
genic potentials of tannins have been well documented by 
Amarowicz [52]. Tannins functions as primary as well as 
secondary antioxidants and chelate metal ions like  Fe2+, 
 Zn2+,  Cu2+, thereby delay oxidation process [53]. The 
inhibitory effect of the iron ions in the UV photolysis of 
 H2O2 is well-studied under different UV light sources [54].

Table 1  Phytochemical composition in methanolic extract of Origanum vulgare under different growing conditions and different plant parts

The data shown is the mean of three replicates ± SD
TPC total phenolic content, TTC  total tannin content, TFC total flavonoid content, DPPH 2,2-diphenyl-1-picrylhydrazyl, ABTS 2,2′-azinobis-
3-ethylbenzothiazoline-6-sulfonic acid, TAC  Total anthocyanin content, MPL mother plant leaf, MPS mother plant stem, IL in vitro-derived plant 
leaf, IS in vitro-derived plant stem, IVG in vitro-growing cultures, GAE gallic acid equivalent, TAE tannic acid equivalent, QE quercetin equiva-
lent, AAE ascorbic acid equivalent, CN cyanidin 3-glucoside
Values followed by same letters within a column are not significantly different and separated by using Duncan’s multiple range test (DMRT; 
P < 0.05)

Plant parts TPC TTC TFC DPPH ABTS TAC 
(mg GAE/g dw) (mg TAE/g dw) (mg QE/g dw) (mM AAE/g dw) (mM AAE/g dw) (mg CN/100 g dw)

MPL 14.11 ± 0.14b 23.55 ± 0.29a 12.15 ± 0.02a 33.22 ± 0.14a 1.28 ± 0.01a 0.0112
MPS 7.54 ± 0.06c 22.62 ± 0.15b 2.78 ± 0.03d 20.23 ± 0.10d 1.29 ± 0.01a 0.0092
IL 16.97 ± 0.06a 23.42 ± 0.11a 10.97 ± 0.08b 32.56 ± 0.11b 1.28 ± 0.02a 0.0251
IS 7.27 ± 0.06cd 22.21 ± 0.11bc 2.09 ± 0.03e 19.18 ± 0.14e 1.29 ± 0.01a 0.0071
IVG 7.41 ± 0.04cd 21.74 ± 0.04c 5.25 ± 0.02c 21.79 ± 0.29c 1.27 ± 0.01a 0.0054

Fig. 3  Agarose gel view of  H2O2 induced DNA damage prevention 
activity of different treatments. Lane 1 (P): non irradiated control 
(pBR322 + PBS); lane 2 (C): irradiated control (pBR322 + H2O2); 
lane 3–6: protecting effect of different extracts (1 mg/mL of dw) and 

lane 7: effect of ascorbic acid (1  mg/mL) on DNA damage. MPL 
mother plant leaf, MPS mother plant stem, IL in  vitro-raised plant 
leaf, IS in vitro-raised plant stem, IVG in vitro-growing cultures
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Phenolic profile of different plant parts in different 
growing conditions

The phenolic profiles of different plant parts in differ-
ent growing conditions of O. vulgare were identified by 

HPLC-DAD and 13 phenolic compounds were detected in 
these samples (Table 2). The presence of individual phe-
nolic compound varied significantly (P < 0.05) in different 
growing conditions and plant parts. A maximum number 
of phenolic compounds were detected in leaf extracts as 
compared to stem and in vitro-growing cultures (Table 2). 
These variations in the phytochemicals might be due to the 
level of hormonal content, specific metabolic and endog-
enous physiological changes taking place in the plants 
exposed to different growing conditions [11]. Among all the 
detected phenolic compounds chlorogenic acid was detected 
the maximum in MPL and MPS extracts (1.50 ± 0.08 and 
1.30 ± 0.17 mg/g dw), respectively. The concentration of 
catechin was high in IL, IS and IVG extracts (2.48 ± 0.16; 
2.63 ± 0.02 and 2.83 ± 0.42 mg/g dw), respectively (Table 2). 
The trans-cinnamic acid was detected only in MPL extract, 
while gallic acid was present in all the extracts. Moreo-
ver, the concentration of gallic acid varied significantly 
(P < 0.05) among the growth conditions (Table  2). The 
maximum number of polyphenolics were detected in mother 
plant, but their concentration was observed significantly 
(P < 0.05) higher in plants growing inside culture room i.e. 
IVG (Table 2). The HPLC chromatograms of phenolic com-
pounds derived from methanolic extracts of different plant 
parts and growing stages of O. vulgare, detected in different 
wavelengths, are presented in Figure S1 of the supporting 
information.
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Fig. 4  Modulating effect of different methanolic extracts of O. vul-
gare on  H2O2 induced DNA damage. S supercoiled pBR322 plasmid 
DNA, RS relative supercoiled pBR322 plasmid DNA, RAS relative 
ascorbic acid supercoiled pBR322 plasmid DNA, all treatments were 
exposed to the UV light and containing 1xPBS + pBR322 plasmid 
DNA + H2O2 + 1 mg/mL plant extracts (MPL mother plant leaf, MPS 
mother plant stem, IL in vitro-raised plant leaf, IS in vitro-raised plant 
stem, IVG in vitro-growing cultures and AA ascorbic acid). Vertical 
bars, representing mean ± SD, followed by same letters between treat-
ments (represented by same pattern) are not significantly different and 
separated by using Duncan’s multiple range test (DMRT; P < 0.05)

Table 2  HPLC based quantitation results of individual phenolic and flavonoid compounds of Origanum vulgare 

HPLC high performance liquid chromatography; MPL mother plant leaf; MPS mother plant stem; IL in  vitro-derived plant leaf; IS in  vitro-
derived plant stem; IVG in vitro-growing cultures
Values followed by same letters within a row are not significantly different and separated by using Duncan’s multiple range test (DMRT; 
P < 0.05). Concentrations of phenolic compounds are in mg/g of dry weight
– not detected

SN Compounds (mg/g dw) MPL MPS IL IS IVG

1 3-Hydroxy Benzoic acid 0.25 ± 0.02c 0.55 ± 0.130b 0.96 ± 0.16a 0.13 ± 0.001c –
2 3-hydroxy cinnamic acid 0.26 ± 0.02a – 0.05 ± 0.004b – –
3 Caffeic acid – 0.02 ± 0.001b – 0.006 ± 0.0007c 0.10 ± 0.007a

4 Catechin 0.18 ± 0.012b – 2.48 ± 0.164a 2.63 ± 0.02a 2.83 ± 0.42a

5 Chlorogenic acid 1.50 ± 0.08b 1.30 ± 0.171b 1.93 ± 0.08a – –
6 Ellagic acid 0.23 ± 0.01a 0.05 ± 0.004c 0.10 ± 0.0002b – 0.24 ± 0.02a

7 Ferulic acid – 0.31 ± 0.04a 0.22 ± 0.017b 0.06 ± 0.006c –
8 Gallic acid 0.21 ± 0.01b 0.14 ± 0.02b 0.16 ± 0.02b 0.13 ± 0.02b 0.42 ± 0.05a

9 p-Coumaric acid 0.01 ± 0.003c 0.015 ± 0.002c 0.08 ± 0.026b 0.47 ± 0.03a –
10 Phloridzin 0.12 ± 0.02b – 1.03 ± 0.17a 0.01 ± 0.0008b 0.82 ± 0.04a

11 Rutin 1.28 ± 0.05a 0.54 ± 0.04b – – –
12 Trans cinnamic acid 1.16 ± 0.03a – – – –
13 Vanillic acid 0.11 ± 0.01c 0.11 ± 0.006c 0.17 ± 0.02b – 0.53 ± 0.03a
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Conclusion

The current investigation emphasized on (i) the efficient 
regeneration system, which is necessary for germplasm 
maintenance and to expand production of elite germplasm 
for agriculture, present study suggest this protocol as an 
alternative method for micropropagation and germplasm 
conservation. Also, this can contribute to the large-scale 
production of O. vulgare for commercial cultivation. (ii) in 
medicinal plants, their contents of active ingredients and 
owned function are the basis of their activities, the deter-
mination of phytochemicals, polyphenols, antioxidant and 
antimutagenic activity of different plant parts and growing 
stages, suggested that the extent of these nutritional and 
anti-nutritional properties varied among growth stages, 
which can be utilized for the appropriate harnessing of the 
therapeutic potential of O. vulgare. Therefore, the succes-
sive yield loss during vegetative propagation and poor seed 
germination in nature can be addressed through micropro-
pagation technique without compromising the culinary and 
therapeutic potential of O. vulgare. Finally, the present study 
can find its application in industrial use as an effective O. 
vulgare quality plant material development both in terms of 
mass propagation and secondary metabolite accumulation.
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